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Atomistic simulation techniques have been used to calculate defect energies for a range of 
trivalent cation impurities in MgO single crystals. From these, values of the association ener- 

,,gies have been estimated for impurity-vacancy aggregates ranging in size from simple impurity- 
vacancy monomers, containing one impurity ion, to large clusters containing up to 24 impurity 
ions. For the MgO : Cr 3§ system, these energies have been incorporated in a mass-action 
analysis and predictions made of the dependence of the equilibrium distribution of defects on 
temperature and on the nominal concentration of the dopant. 

1. In troduc t ion  
Many of the properties of MgO single crystals are 
determined by the presence of impurity ions, par- 
ticularly aliovalent ions, whether these ions are 
introduced deliberately or are adventitiously present. 
The case of trivalent cations, present as substitutional 
impurities in MgO has been widely studied, both 
experimentally and theoretically. Interest in these 
systems arises primarily because of the association of 
the impurity ions with the oppositely charged cation 
vacancies that are created to preserve charge neutral- 
ity within the crystal. Experimentally, much atten- 
tion has focused on the spectroscopic properties of 
trivalent transition metal cations embedded in the 
MgO lattice, and on how these properties are affected 
by the presence of nearby cation vacancies which 
reduce the symmetry of the environment experienced 
by the transition metal ion [1, 2]. Such investigations 
have provided detailed information on the types of 
defects present and have greatly increased our under- 
standing of these systems. However, little quantitative 
information on defect formation and association ener- 
gies has emerged. Furthermore, techniques such as 
diffusion and conductivity measurements which pro- 
vide most of the available experimental information 
on defect formation, migration and association in the 
alkali and silver halides [3] have proved less successful 
in the study of oxides. In addition to the experimental 
difficulties in working at the higher temperatures 
required, the impossibility of obtaining "pure" crys- 
tals for investigation has made interpretation of experi- 
mental results more difficult. Therefore, although a 
number of studies of the diffusion and conductivity of 
MgO:M 3+ systems have been reported, the inter- 
pretation of the Arrhenius energies that are measured 
is often ambiguous [4-6]. 
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For these reasons, reliable theoretical values for 
defect association energies for the MgO: M 3+ systems 
are desirable to allow prediction of the configurations 
of the impurity-vacancy associates that may form as 
an aid in the interpretation of experimental data. 
Following the success of atomistic simulation studies 
in calculating many of the experimentally measured 
defect parameters for the alkali and silver halides 
[7, 8], and the alkaline earth fluorites [9, 10], these 
techniques have also been used to study trivalent 
cation impurities in MgO [11, 12]. However, in these 
earlier calculations, both the range of trivalent cations 
and the configurations of impurity-vacancy aggre- 
gates considered have been rather limited. In this 
paper, calculated association energies are reported for 
sixteen trivalent cation impurities in MgO and the 
effect of impurity ion size is elucidated. A wide range 
of possible impurity-vacancy configurations is con- 
sidered and the formation of large clusters is also 
investigated. Where possible, comparisons are made 
with experimental data. For Cr 3+ we have examined 
the effect of temperature on the association energies of 
these clusters by considering the lattice expansion of 
the host crystal. Finally the results are incorporated in 
a mass action analysis of the MgO : Cr 3 + system which 
enables predictions to be made as to the equilibrium 
distribution of defects as a function of the concentra- 
tion of impurity present and of the temperature. 

2. Theoretical methods 
The defect energies were calculated using the HADES 
suite of programs [13]. Such calculations have two 
main aspects: the representation of the lattice and the 
specification of appropriate interionic potentials to 
describe the short-range interactions between the 
ions. Both aspects have been described extensively 

0022-2461/88 $03.00 + .12 �9 1988 Chapman and Hall Ltd. 



TAB LE I Energies of solution, in eV per impurity ion, for four possible solution processes. These were calculated using the potentials 
developed by Lewis [16] (see text) 

Solution process Impurity ion 

V~+ Fe3+ Mn3+ Ti3+ Sc3+ 

M203(8 ) MgO 2MMg + V ~  + 30~ 1.8 1.9 1.4 1.4 1.8 

M203(S ) MgO 2MMg + O~' + 20~ 4.0 4.1 3.6 3.6 3.9 

M203(8 ) MgO) 2M~' + 3V~lg -I- 30~ 18.7 17.4 17.2 18.1 18,6 

M203(S ) Mgo 2Mi.. + 30;' 25.3 24.0 23.8 24.7 25,2 

elsewhere [14] and it is the quality of the interionic 
potential which primarily determines the reliability of 
calculated defect energies. In recent years, a number of 
potential models for MgO have been developed and 
two of these were used in the present study. The first, 
Potential I, was developed by Catlow et al. [15] using 
a semi-empirical fitting procedure in which the Mg 2+ 
ion was treated as unpolarizable. The second, Poten- 
tial II, was derived using the non-empirical electron 
gas methods of Mackrodt and Stewart [16] that incor- 
porate the Madelung field of the crystal. The shell 
parameters of the 02 ions were then obtained empiri- 
cally by fitting to dielectric data and the Mg 2+ ion was 
again regarded as unpolarizable. Two other empirical 
potentials [17, 18] are available and test calculations 
carried out during the course of this work showed 
them to be similar to Potential I. We shall therefore 
present results only for Potentials I and II with the 
exception of our calculations of the heats of solution 
of a number of trivalent ions in MgO (Table I) which 
were obtained using the potential developed by Lewis 
(his Potential B) [18]. These potentials alone provided 
the lattice energies for the M203 salts which are 
necessary for a self-consistent calculation of the heats 
of solution. In calculating the defect energies of 
impurity ions in a host crystal, it is important that the 
impurity ion-host ion potentials are derived by a 
method consistent with that used to derive the host 
crystal potential. This is easily achieved for electron 
gas potentials and the details of such potentials for a 
range of trivalent cation impurities in MgO are avail- 
able in the compilation of Colbourn et al. [19] which 
also includes the details of Potential II. The potentials 
are numerical in form and the program evaluates 
them, and their first and second derivatives which are 
necessary for the energy minimization, using cubic 
splining routines which were incorporated for this 
purpose. With Potential I, the impurity ion-host ion 
parameters used were those obtained from the poten- 
tials for MzO3 type oxides derived by Lewis [18]. These 
semi-empirical potentials are in the Buckingham or 
Born-Mayer form which is more usual in simulations 
of this type. The results of calculations using the two 
potentials make it possible to compare their suitability 
to represent the systems under study. 

3. Calculated defect energies 
3.1. Small aggregates 
The intrinsic defect energies and crystal properties 
calculated using these two MgO potentials have been 
reported elsewhere [12, 15]. In each case, agreement 
with available experimental values is reasonable. Both 

experimental and theoretical investigations indicate 
that in MgO doped with trivalent cations, the pre- 
dominant defects are substitutional impurities with 
extrinsic cation vacancies being created to preserve 
charge neutrality: two substitutional ions for each 
cation vacancy. Table I shows heats of solution cal- 
culated using the MgO Potential B developed by 
Lewis [18] for five trivalent cations in MgO for four 
possible solution processes. The process involving the 
formation of substitutional impurities with charge 
compensating cation vacancies is found to have the 
lowest energy and is, therefore, clearly predicted to be 
that most likely to occur. In the Kroger-Vink notation 
[20], which is used in this paper, these defects are 
denoted as MMg and V"Mg, respectively. The heats of 
solution given in Table I assume that the MMg and V~g 
defects exist as isolated species in the lattice. These 
species do, however, carry opposite virtual charges 
and it is likely, therefore, particularly when they are 
present at higher concentrations, that they will asso- 
ciate to form impurity-vacancy monomers, dimers 
and eventually larger clusters. The simplest complex 
which may form is one containing a single impurity 
ion and a single cation vacancy. These species, referred 
to here as monomers, are not charge neutral: their net 
charge is - 1 .  Local charge compensation is fully 
achieved when a second impurity ion joins the mono- 
mer thus forming a dimer. (It should be noted that in 
the literature pertaining to trivalently doped MgO, 
these two types of impurity-vacancy defects, referred 
to as monomers and dimers here, are often named as 
dimers and trimers, respectively. Clearly these desig- 
nations may lead to confusion and the naming system 
adopted here is chosen because it is consistent with the 
system used to describe aggregates in the alkali halide 
and fluorite crystals [10, 21], where the prefixes mono-, 
di- and tri- refer to the number of impurity ions 
present in the aggregate rather than the total number 
of species which it contains.) 

The first nearest-neighbour (nn) and second 
nearest-neighbour (nnn) impurity-vacancy monomer 
configurations are shown in Fig. 1. Their association 
energies (AUm ...... ) were evaluated as 

AUra . . . . . .  = b/[(MMgVMg)'] -- t'/(V~lg) -- b/(MMg) 
(1) 

The calculations use the two-region strategy in which 
the forces between the ions immediately surrounding 
the defect, Region I, are treated explicitly whereas the 
more distant ions, Region II, are computed in the 
harmonic approximation. The sizes of Region I used 
for all of the defect configurations were carefully 
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Figure 1 Structures of (a) nn and (b) nnn impurity vacancy mono- 
mers. The arrows indicate the direction of ionic displacements and 
the magnitudes of these displacements are given in Table II. 
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Figure 2 The dependence of the association energies for (o) nn and 
(A) n n n  (MMgVMg)' monomers, calculated using Potential I, on the 
effective ionic radii of the impurity ions. 

size is s h o w n  in Fig .  2. T h e  d i s p l a c e m e n t s  o f  sur-  

r o u n d i n g  ions  are  a lso  given.  T h e  re la t ive  s tabi l i t ies  

o f  the  n n  a n d  n n n  m o n o m e r s  a re  f o u n d  to  d e p e n d  

s t r o n g l y  o n  d o p a n t  i on  size. F o r  the  n n  m o n o m e r ,  

t he re  is an  a p p r o x i m a t e l y  l inea r  i nc rease  in the  

T A B L E  II The calculated association energies Aunn and Aunn,, in units of eV, and ionic displacements, in units of Mg-O lattice 
separation, for nn and nnn (MMgVMg)' monomers. The directions of the ionic displacements a, b, c, d and e, are defined in Fig. 1: positive 
values correspond to relaxation in the direction shown 

(a) Potential I 

M 3+ AUnn a b c Aunn n d e 

A13+ 0,65 0.025 0.100 0.070 1.01 0.012 0.154 
Cfl + 0.75 0.022 0.049 0.075 0.84 0.020 0.106 
V 3+ 0.83 0.026 0.027 0.078 0,76 0.021 0.086 
Fe 3+ 0.80 0.032 0.044 0.076 0,85 0.015 0.108 
Mn 3+ 0.79 0.028 0.044 0.076 0,84 0.017 0.106 
Ti 3+ 0.81 0.025 0.032 0.078 0.78 0.020 0.091 
Sc 3+ 0.92 0.035 0.009 0.082 0.71 0.018 0.073 
Lu 3 + 1.09 0.046 - 0.031 0.090 0.55 0.018 0.034 
Yb 3+ 1.11 0.048 - 0.035 0.091 0.54 0.018 0.030 
y3+ 1.17 0.052 -0.048 0.095 0.49 0.018 0.017 
Ho 3+ 1.17 0.052 -0.047 0.095 0.49 0.018 0.017 
Gd 3+ 1.25 0.058 - 0.063 0.099 0.42 0.017 0.002 
Eu 3+ 1.27 0.059 - 0.067 0. I01 0.41 0.016 - 0.003 
Nd 3+ 1.36 0.067 - 0.083 0.106 0.34 0.015 - 0.019 
Pu 3+ 1.35 0.065 - 0.081 0.105 0.35 0.015 - 0.016 
La 3+ 1.50 0.078 - 0.107 0.114 0.25 0.013 - 0.042 

(b) Potential II 

M 3 +  AUnn a b c AUnn , d e 

AI 3+ 0.71 0.068 0.159 0.081 0.94 0.004 0.250 
Ni 3+ 0.86 0.030 0.053 0.107 0.66 0.021 0.153 
Co 3+ 0.86 0.030 0.053 0.107 0.65 0.021 0.153 
Cr 3+ 0.87 0.031 0.053 0.107 0.65 0.020 0.154 
Ga 3+ 0.85 0.029 0.055 0.107 0.66 0.021 0.153 
Fe 3 + 0.86 0.030 0.053 0.107 0.65 0.020 0.153 
Mn 3+ 0.87 0.030 0.053 0.107 0.65 0.020 0.154 
Ti 3+ 0.87 0.032 0.054 0.106 0.66 0.019 0.156 
Se a+ 0.87 0.032 0.055 0A06 0.66 0.019 0.157 
In 3+ 1.05 0.037 0.003 0,116 0.44 0.023 0.107 
y2+ 1.05 0.039 0.007 0.115 0.46 0.022 0.113 
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T A B  L E I I I Calculated association energies Au~n and Au . . . .  in 
units of  eV, for nn and nnn (MMgLiMg) complex using Potential II. 
Note: u(LiMg ) = 16.24eV 

M 3§ ~b/n n A/,/nn n 

AP + 0.37 0,50 
Ni 3+ 0.47 0.35 
Co 3+ 0.47 0.35 
Cr 3+ 0.47 0.34 
Ga 3+ 0.47 0.35 
Fe 3+ 0.47 0.34 
Mn ~+ 0.48 0.34 
Ti 3+ 0.47 0.35 
Sc ~+ 0.47 0.35 
In 3+ 0.56 0.25 
y3+ 0.56 0.26 

magnitude of the association energy with the increase 
in the size of  the impurity ion, whereas for the nnn 
monomer, the opposite trend is observed. The systems 
considered here show that, in general, for impurity 
ions which are smaller than the host cation, the nnn 
monomer is more strongly bound, whereas for impurity 
ions larger than the host cation, the nn monomer 
becomes the more strongly bound of the two. Both 
experimental and computer simulation results lbr 
the alkali halides find an analogous behaviour as 
do previous calculations for MgO [12] and this is 
explained in terms of  the relaxation of the surrounding 
anions. 

An alternative source of  charge compensation in 
MgO : M 3+ systems is provided by monopositive ions 
such as Li § , Na § and K + which are often present as 
substitutional impurities in MgO single crystals. As 
substitutional ions, Mhg, they have a single virtual 
negative charge and consequently may form neutral 
associates with MMg species. Calculations were carried 
out for one such monovalent ion, Li § , and Table III 
lists the theoretical association energies for nn and 
n n n  (MMg LiMg) complexes. These association energies, 
Au, were calculated using the equation 

Au = u[(MMgLiMg)] - -  U(MMg ) - -  u (Lihg  ) (2) 

with Potential II only being used, because this alone 
provided a lithium ion-host  ion potential, compatible 
with the set of impurity-host potentials [19]. Similar 
variations with dopant ion size were observed for 
these association energies as were evident for the 
( M M g V M g ) '  m o n o m e r s .  As the size of  the trivalent 
impurity ion increases, the magnitude of the associ- 
ation energy for the nnn configuration decreases and 
that for the nn species increases. However, in all cases, 
the calculated association energy is approximately 
half that of  the analogous (MMgVMg)'  m o n o m e r ,  

as might be anticipated from purely Coulombic 
considerations. 

Returning to consider the impurity-vacancy mono- 
mers, the next step in their aggregation process 
involves the addition of  a second trivalent impurity 
ion to form a neutral dimer. Consideration of only 
those structures in which the cation is in either an nn 
or nnn position to both impurity ions yields nine 
possible configurations. These structures, labelled A 
to I, are shown in Fig. 3. These same nine structures 
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I 

[~] Cation vacancy O impurity cation 

Figure 3 The structures of the nine (MM8VMgMMg) dimers for which 
association energies are reported in Table IV. 

have been arrived at previously for the analogous case 
of impurity-divancy centres in alkali halides doped 
with divalent cations [22, 23]. The association energy 
of these dimers may be calculated either in terms of the 
total association energy of the dimer relative to its 
isolated constituents or in terms of the additional 
association energy which results when the second 
trivalent impurity ion is added to the monomer. The 
total association energies are given in Table IV and are 
calculated according to the equation 

tot = U(MMgVMg MMg ) A/,/dime r 

- 2U(MMg) -- u(V~g) (3) 

From this, the additional association energy may be 
calculated by subtracting the association energy of the 
appropriate monomer as given in Table lI. 

The variation of these association energies with 
dopant ion size is similar to that found for the mono- 
mers and occurs for the same reasons. The most stable 
dimer configuration changes from A to E and finally 
to F as the impurity ion size increases. The dimers 
in which both impurity ions are in nn positions to 
the vacancy, configurations E, F, H and I, show an 
increase in the magnitude of both the total and 
additional association energies with increasing dopant 
ion radius, whereas the opposite trend is observed 
for dimers A and C in which both impurities are 
in nnn positions to the vacancy. For  those dimers 
(B, D and O) in which one impurity is in an nn 
position and the other in an nnn position relative to 
the vacancy, the total association energy is almost 
independent of the size of the impurity ion. However, 
the magnitude of the additional association energy 
increases with dopant ion radius when the second 
impurity ion adds on in an nn position whereas the 
opposite trend is observed when the second impurity 
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T A B L E  IV 
Fig. 3 

(a) Potential I 

Calculated total association energies, Au~ ~ (X = A, B . . . . .  I), in units o f  eV, for the dimers illustrated in 

Mn 3+ A B C D E F G H I 

A1 ~+ 1.87 l. 11 1.72 1.45 1.03 1.08 1.25 0.96 0.62 
Cr 3+ 1.56 1.41 1.38 1.33 1.30 1.27 1.12 1.07 1.00 
V 3+ 1.41 1.42 1.25 1.32 1.46 1.41 1.09 I. 15 1.24 
Fe 3+ 1.58 1.47 1.42 1.39 1.40 1.36 1.17 1.13 1.13 
Mn 3+ 1.57 1.45 1.40 1.37 1.37 1.34 1.15 1.12 1.10 
Ti 3+ 1.45 1.42 1.29 1.32 1.43 1.38 1.10 1.14 1.19 
Sc 3+ 1.30 1.45 1.14 1.34 1.64 1.59 1.09 1.26 1.47 
Lu 3+ 0.93 1,44 0.78 1.34 1.97 1.94 1.02 1.44 1.82 
Yb 3+ 0~89 1.44 0.75 1.34 2.01 1.98 1.04 1.47 1.86 
y3+ 0.75 1.43 0.62 1.35 2.12 2.11 1.03 1.54 1,94 
Ho 3+ 0.76 1.43 0.62 1.35 2.11 2.11 1.03 [.53 1.94 
Gd 3+ 0.58 1.42 0.45 1.37 2.26 2.29 1.02 1.63 2.04 
Eu 3+ 0.51 1.41 0.41 1.38 2.30 2.34 1.02 1.66 2.07 
Nd 3 + 0.35 1,40 0.23 1.41 2.45 2.54 1.02 1.77 2,14 
Pu 3+ 0.38 1.41 0.26 1.40 2.42 2.50 1.02 1.75 2.13 
La 3+ 0.07 1.38 - 0.04 1.48 2.67 2.86 1.04 1.95 2.22 

(b) Potential II 

M 3+ A B C D E F G H I 

A13+ 1.75 1.43 1.61 1.42 1.15 1.17 1.20 0.99 0.75 
Ni 3+ 1.19 1.35 1.04 1.24 1.54 1.49 0.99 1.17 1.39 
Co 3+ 1.19 1.35 1.04 1.24 1.55 1.50 0.99 1.17 1.39 
Cr 3+ 1.19 1.36 1.04 1.25 1.56 1.51 1.00 1.18 1.41 
Ga  3+ 1.21 1,35 1.06 1.24 1.53 1.48 0.99 1.16 1.37 
Fe 3+ 1.19 1.35 1.04 1.24 1.55 1.50 0.99 1.18 1.40 
Mn  3+ 1.19 1.36 1.04 1.25 1.56 1.51 1.00 1.19 1.42 
Ti 3+ 1.20 1.36 1.05 1.25 1.56 1.51 1.00 1.18 1.41 
Sc 3+ 1.21 t .37 1.06 1.26 1.55 1.50 1.00 l. 18 1.40 
In 3+ 1.68 1.28 0.55 1.20 1.89 1.88 0.88 1.37 1.76 
y3+ 0.72 1.30 0.57 1.21 1.89 1.87 0.88 1.37 1.74 

ion adds on in an nnn position. For dimers in which 
the impurity ions are either both nn or both nnn to the 
vacancy, the magnitude of the additional association 
energy is less than the magnitude of the association 
energy of the corresponding monomer. This effect 
increases with the size of the impurity ion. It also 
becomes more pronounced as the separations of these 
species in the various configurations is decreased this 
is due primarily to the Coulombic forces between 
them. 

If we refer to dimers as homogeneous when both of 
the impurity ions are the same, it is clear that a large 
number of heterogeneous dimers, involving two dif- 
ferent trivalent impurity ions can be formed. We have 
carried out a limited number of calculations on such 
systems and these show, in general, that the total 
association energies are an average of the total associ- 

v 

[ ]  Cation vacancy 

�9 Impurity cation 

Figure 4 The structure of  the tetramer for which association ener- 
gies are reported in Table V. 
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ation energies calculated for the two corresponding 
homogeneous dimers. 

Neutral complexes may also form by association 
of dimers to form tetramers and larger aggregates. 
Although there are many possible combinations of 
two dimers, only one tetrameric structure is con- 
sidered here. This is shown in Fig. 4 and is formed 
from two dimer B complexes. The calculated associ- 
ation energies for the formation of this tetramer from 
its isolated constituents and also from two B type 
dimers are listed in Table V and show a decrease in the 
magnitude of the association energy with increasing 
dopant ion size. For ions smaller than Sc 3+, this 
tetramer is bound relative to two dimer B complexes 
whereas this is not the case for larger ions. This is 
presumably due to the elastic strain involved in 
putting large dopant ions close together. Thus, for 
small dopant ions, the formation of tetramers from 
dimers is possible, although the net energy gain in this 
case is rather small. 

3.2. Large aggregates  
Quantitative experimental investigations of C r  3+ ions 
in MgO have indicated that the amount of impurity 
ions detected as isolated ions and in the form of simple 
monomeric and dimeric species is considerably less 
than the analytical chromium concentration [24]. This 
observation may be interpreted as evidence for the 
existence of significant concentrations of larger clus- 
ters of Cr 3+ ions. Because such clusters have not yet 
been identified experimentally, suggestions as to their 



T A B L E  V Calculated association energies, in eV per vacancy, 
for the tetramer shown in Fig. 4 

M s+ Relative to isolated Relative to dimer B 
defects defects 

Potential I Potential II Potential I Potential II 

A13+ 1.84 t.79 
Ni 3+ * 1.44 
Co 3+ * 1.44 
Cr 3+ 1.66 1.44 
Ga 3+ * 1.44 
V 3+ 1.59 * 

Fe 3+ 1.71 1.44 
Mn 3~ 1.68 1.44 
Ti 3+ 1.61 1.45 
Sc 3+ 1.56 1.46 
In 3+ * 1.13 
Lu 3+ 1.38 * 
Yb s+ 1.36 * 

y3+ 1.29 1.17 
Ho 3+ 1.29 * 
Gd s+ 1.21 * 
Eu 3+ 1.18 * 
Nd 2+ 1.09 * 
Pu 3+ 1.11 * 
La s+ 0.96 * 

0.73 

0.25 

0.17 
0.24 
0.23 
0.19 
0.I1 

- ) . 0 6  

- ) . 0 6  

- ) . 1 4  

- ) . 1 4  

- ) . 2 1  

-,) ,23 
-,).31 
- ) . 2 9  

- .42 

0.36 
0.09 
0.09 
0.08 
0.09 

0.09 
0.08 
0.09 
0.09 

-0 .17  

Ig 

-0 .13  

*The impurity ion is not included in this potential set. 

structure must be speculative. Gourdin and Kingery 
[11] proposed the existence of spinel-like impurity- 
vacancy aggregates in these systems, similar to the 
type of structure investigated theoretically by Catlow 
and Fender [25] in Fe~_xO crystals. These aggregates 
all contain a basic structural unit consisting of a 
tetrahedrally coordinated interstitial cation surrounded 
by four cation vacancies, with trivalent impurities 
symmetrically distributed around this tetrahedron to 
reduce the overall charge of the cluster. This basic unit 

is referred to as the 4-1 cluster. The interstitial cation 
may be either a host or an impurity cation. Further 
aggregations of these 4-1 clusters is possible, leading 
ultimately to spinel-type structures and this may occur 
either by edge sharing or corner sharing of the basic 
tetrahedral unit. X-ray, neutron and electron diffrac- 
tion and electron microscopic studies in Fel_xO have 
led to a number of proposals for the type of clusters 
present, based on the 4-1 unit. Calculated association 
energies are reported here for selected aggregates, 
namely the 4-1, 6-2, 8-2, 16-5, 24-5 and 24-5-a clus- 
ters, originally proposed by Gourdin and Kingery 
[11], where the numbers refer to the numbers of sub- 
stitutional and interstitial ions, respectively. The 
structures of these complexes are shown in Fig. 5. The 
first three of these, the 4-1, 6-2 and 8-2 clusters, may 
contain either Mg 2+ ions or trivalent impurity ions as 
interstitials, without making the overall charge on the 
defect excessively high. The notation used by Gourdin 
and Kingery for these three structures is augmented, 
where necessary, by an additional term in brackets 
indicating whether the interstitial ions in the cluster 
are trivalent dopant ions (M 3+) or host cations 
(Mg2+). The 16-5 cluster, a corner-sharing arrange- 
ment of five tetrahedral units, models a portion of an 
inverse spinel structure whereas the 24-5 cluster, also 
corner sharing, forms the basis of the normal'spinel 
structure. The 24-5-a cluster differs from the 24-5 
only in the arrangement of the compensating trivalent 
substitutional ions surrounding the basic tetrahedral 
units. Similarly, the 8-2 cluster differs from the 6-2 
cluster only in the number and arrangement of the 
charge-compensating substitutional impurities sur- 
rounding the defect. 

In calculating the association energies of these 

4-1 

(a )  

[ ]  Cation vacancy 

0 

8-2 

�9 Impurity cation (M 3+) 

Interstitial cation (M 3+ or Mg 2+) 

4-5a 

:t~ . . . . .  Y 

(b) 

[ ]  Cation vacancy 

0 Interstitial cation (M 3+ or Mg =*) 

�9 Impuri ty cation (M 3+) 

~ 24-5 

Figure 5 Structures of the larger clusters: (a) edge-sharing clusters; (b) corner-sharing clusters with the positions of the substitutional trivalent 
impurity cations shown for only one of the four tetrahedral units about the central tetrahedron: the remaining substitutional impurities 
occupy symmetrically equivalent positions about each of the other three tetrahedral units. 
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T A B L E  VI The numbers of defect species and the overall charges for the larger clusters: the notation used is explained in the text 

Cluster 

4-1(M 3+ ) 4-1(Mg 2+ ) 6-2(M 3+ ) 6-2(Mg 2+ ) 8-2(M 3+ ) 8-2(Mg 2+ ) 16-5 24-5 24-5-a 

Total V~g 4 4 6 6 6 6 16 16 16 
Total MMg 4 4 6 6 8 8 16 24 24 
Total M~" 1 0 2 0 2 0 5 0 0 
Total Mg~i 0 1 0 2 0 2 0 5 5 
Net V~g 3 3 4 4 4 4 11 11 11 
Net MMg 5 4 8 6 10 8 21 24 24 
Net charge - 1 - 2 0 - 2 2 0 - 1 2 2 

clusters, the isolated constituents are taken to be in 
their most stable positions. For the systems considered 
here, this requires that each trivalent interstitial ion, in 
association with a cation vacancy, be treated as arising 
from the migration of a trivalent substitutional ion to 
an interstitial site. Similarly each interstitial magnesium 
ion, in association with a cation vacancy, is treated as 
arising from a normal lattice site. In this way, the 
defect energies of the isolated constituents are calcu- 
lated in terms of net vacancies and net substitutionals, 
with the net number of interstitials being zero. Table 
VI shows both the total and net number of vacancies, 
substitutional ions and interstitial ions present in each 
cluster, together with its overall charge. The associ- 
ation energies of these complexes were calculated 
using the equation 

Auclust~r = u(cluster) -- Vu(V~g) - Su(MMg) (4) 

where Vis the net number of vacancies and S is the net 

TAB L E V I I Calculated association energies, in units of eV per net 

(a) Potential I 

number of substitutional ions. Finally, so that com- 
parisons with the calculated association energies of 
monomeric and dimeric complexes are valid, the 
association energies of these clusters were calculated 
per net vacancy and the results are given in Table VII. 
Because of  the large size of these clusters, these calcu- 
lations were carried out using ~ 380 ions in Region I. 

It is evident that clusters containing impurity inter- 
stitials are significantly more stable than the equiv- 
alent clusters involving host cation interstitials with 
the exception of the 8-2 clusters for which both con- 
figurations give similar association energies. These 
results suggest that the arrangement of the charge- 
compensating substitutional ions is a significant factor 
in determining the association energies of these com- 
plexes. With the exception of the larger dopant ions, 
there is a small increase in the magnitude of the calcu- 
lated association energy per vacancy as the size of the 
cluster increases, although this increase is perhaps too 

vacancy, for the clusters shown in Fig. 5 

M 3 + 4-1" 4 - l t  6-2* 6-2 * 8-2* 8-2t 16-5 24-5 24-5-a 

A13+ 1.72 1.49 2.19 1.50 2.05 2.03 2.25 2.05 2.39 
Cr 3+ 1.89 1.48 1.99 1.43 2.03 2.08 2.20 2.18 2.43 
V 3+ 2.06 1.53 2.02 1.45 2.19 2.21 2.32 2.22 2.47 
Fe 3+ 2.12 1.58 2.28 1.51 2.39 2.23 2.53 2.26 2.52 
Mn 3+ 2.06 1.55 2.20 1.49 2.29 2.19 2.43 2.24 2.49 
Ti 3+ 2.03 1.52 2.03 1.45 2.17 2.18 2.31 2.22 2.47 
Sc 3+ 2.33 1.62 2.26 1.52 2.54 2.39 2.61 2.26 2.55 
Lu 3+ 2.62 1.72 2.42 1.61 2.83 2.67 2.78 2.17 2.59 
Yb 3+ 2.67 1.73 2.46 1.63 2.88 2.71 2.82 2.16 2.60 
y3+ 2.75 1.77 2.54 1.67 2.97 2.80 2.86 2.10 2.61 
Ho 3+ 2.75 1.77 2.53 1.67 2.96 2.80 2.85 2.10 2.61 
Gd 3+ 2.88 1.83 2.68 1.75 3.11 2.94 2.93 2.03 2.64 
Eu 3+ 2.91 1.85 2.71 1.78 3.13 2.98 2.94 2.00 2.64 
Nd 3+ 3.03 1.91 2.88 1.88 3.26 3.12 3.00 1.91 2.66 
Pu 3 + 3.01 1.90 2.85 I. 86 3.24 3.09 2.99 1.93 2.66 
La 3 + 3.21 2.03 3.18 2.06 3.45 3.33 3.07 l. 76 2.69 

(b) Potential II 

M 3+ 4 1" 4-1t 6-2* 6-2t 8-2" 8-2t 16-5 24-5 24-5-a 

A13+ 2.18 1.67 2.67 1.62 2.56 2.23 2.76 2.12 2.44 
Ni 3+ 2.25 1.61 2.09 1.58 2.33 2.39 2.46 2.19 2.51 
Co 3+ 2.36 1.61 2.10 1.58 2.34 2.40 2.46 2.19 2.51 
Cr 3+ 2.29 1.63 2.14 1.59 2.40 2.42 2.51 2.21 2.53 
Ga 3+ 2.23 1.60 2.07 1.57 2.31 2.38 2.44 2.I9 2.50 
Fe 3+ 2.28 1.62 2.12 1.59 2,37 2.41 2.48 2.21 2.52 
Mn 3+ 2.29 1.63 2.13 1.60 2,39 2.42 2.50 2.21 2.53 
Ti 3+ 2.31 1.63 2.17 1.60 2,43 2.43 2.53 2.22 2.53 
Sc 3 + 2.30 1.63 2.18 1.60 2.42 2.42 2.53 2.22 2.53 
In 3+ 2.38 1.69 2.01 1.69 2.42 2.70 2.35 1.99 2.51 
y3+ 2.45 1.70 2.12 1.69 2.53 2.71 2.47 2.04 2.53 

*The cluster contains M 3+ interstitials. 
tThe cluster contains Mg2+ interstitials. 
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small to constitute evidence for the continuation of 
the aggregation process to yield the larger clusters. 
Comparing the association energies for the 24-5 and 
24-5-a clusters, the large effect of  the positions of the 
surrounding substitutional ions is again apparent and 
this is especially true for the larger impurity ions. 

The magnitude of the association energy of the 4-1 
(M 3+ ) cluster is considerably larger than that of any of 
the dimers considered. This is true for all impurity 
ions, with the exception of the value for A13+ calcu- 
lated using Potential I. This suggests that such cluster- 
ing is generally thermodynamically favoured, at least 
in its initial stages. 

3.3. T e m p e r a t u r e  e f fec t s  
In practical considerations we are concerned princi- 
pally with defect configurations and association ener- 
gies in MgO that are relevant at high temperatures. 
For  this reason we now calculate the changes which 
occur in these entities as the temperatures is increased. 
The principal effect of temperature is lattice expansion 
and for internal consistency this has been calculated 
using the method introduced by Allen et al. [26]. A 
minor point to be noted here is that the potentials we 
have used to calculate the lattice expansion, namely 
those developed by Catlow et al. [15], were based on 
zero mechanical strain for a lattice parameter of 
0.2106 nm which is the value reported by Peckham [27] 
for MgO at 298 K. As zero mechanical strain corre- 
sponds to zero K of temperature for a classical lattice, 
these potentials contain a slight inconsistency. How- 
ever, because we are concerned here with changes in 
the defect association energies that result from lattice 
expansion, i.e. ku as a function of  Aa(T), and as we 
shall be considering a very extensive temperature 
range, this minor inconsistency is of no significance 
for the present results. 

In the method of Allen et al. [26] for the calculation 
of the lattice expansion, the lattice parameter, a, and 
the temperature, T, are derived from the gradient, 
[Su(a)/6s(a)]r, in which u(a) and s(a) are the energy 
and entropy, respectively, of the perfect lattice. The 
calculated temperature dependence of  a, using Poten- 
tial I, is shown in Fig. 6, from which we obtain values 
of the linear expansion coefficient, ct, of  9.3 x 10 .6 K -  
from 0 to 1000K and 10.6 x 10 6 K-1 from 0 to 
2000 K, compared with experimental values of 9 to 
15 • 10-6K 1 in the temperature range 500 to 
1700 K [28]. We have confined our attention of Poten- 
tial I but note that differences in the lattice expansion 
based on potentials have been reported to be small 
[26]. 

With regard to some of the formalities associated 
with finite temperature calculations, it has been 
pointed out previously [29] that experimentally deter- 
mined quantities almost invariably correspond to 
lattices at constant pressure, rather than at constant 
volume and that there are differences in the values of 
defect parameters calculated under these two con- 
ditions [26, 30]. In general, the defect enthalpy at 
constant pressure, hp, is not equal to the internal 
energy at constant volume, Uv, although in many 
cases, hp is nearly constant over a wide range of tern- 

0.217- /0 .21675 
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Figure 6 Calculated lattice expansion for MgO based on the inter- 
ionic potential of Callow et al. [15]. 

perature with a value close to that of uv at 0 K. This, 
of course, is the reason why there has so often been 
good agreement between experimentally determined 
and calculated defect energies. Typically, hp and uv for 
the formation of  defects differ by 0.5 to 1.5eV over a 
temperature range of 2500 K [26]. Differences between 
hp and uv for point defect association, on the other 
hand, differ by only a few tenths of an electron volt or 
less [31]. For  the present, therefore, and largely for 
the purpose of illustrating the effects of  elevated 
temperatures, we restrict our attention to the tem- 
perature dependence of defect association energies at 
constant volume and confine our examples to defect 
associates involving Cr +3 and to calculations based on 
Potential I. 

Reference to Table I indicates that at low tempera- 
ture, substitutional impurity ions compensated by 
cation vacancies is the preferred, i.e. lowest energy 
mode of solution of M203 oxides in MgO, with oxygen 
interstitial compensation some 2.2 eV higher in energy. 
The first point we wish to consider, then, is whether or 
not the mode of solution of Cr 3+ , and other trivalent 
impurities changes at elevated temperatures. The two 
remaining modes are at least 13 eV more energetic and 
hence unlikely to be of  any significance up to the 
melting point of MgO. In the absence of defect associ- 
ation, the difference between the energies of solution 
for cation vacancy and oxygen interstitial compen- 
sation, Aus, is given per impurity ion by 

ku~ = 1 [u(O~') - u(V~g) - uL(MgO)] (5) 

in which uL(MgO) is the lattice energy of MgO and 
u(O~') and u(V~g) are the defect energies of the inter- 
stitial oxygen and magnesium vacancy species, respect- 
ively. We note that as the substitution energies for the 
trivalent ion occurs in both modes of solution the 
results are valid for all trivalent ions. At low tempera- 
ture, Au~ is ~ 2.2 eV and hence cation vacancy com- 
pensation predominates: but does this remain the case 
at higher temperatures? Table VIII shows the tem- 
perature dependence of Au~ for constant volume defect 
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TABLE VI I i  The difference in the energies of solution per 
impurity ion (Aus in eV) for two modes of solution involving 
impurity with anion interstitial compensation and cation vacancy 
compensation for MgO : M 3+ systems. The lattice parameters used 
in the calculation are shown and are based on the potential of 
Catlow et  al. [15]. Au (solution) is calculated using Equation 5 

Temperature (K) Lattice parameter (nm) 5us(eV ) 

0 0.21060 2.20 
500 0.211 55 2.06 

1000 0.212 55 1.91 
1500 0.213 72 1.75 
2000 0.215 05 1.57 
2500 0.21675 1.34 

energies based on Potential I. From this we see that 
while Aus certainly decreases with increasing tempera- 
ture, vacancy compensation remains the predominant 
mode of solution even at the highest temperatures. 

Turning now to defect association energies, Table IX 
shows calculated values of these as a function of 
temperature for the full range of associates from 
monomers to the 24-5-a complexes. As expected they 
decrease with increasing temperature/lattice parameter, 
by approximately 30% in the case of Cr 3+ defects over 
the ~ 2500 K temperature range. The decreases in the 
individual association energies range from 0.33 eV for 
nnn monomers to 0.64eV for the 4-1(M 3+) associates 
to 0.75 eV for the 24-5-a clusters. At elevated tempera- 
tures, therefore, the effect of lattice expansion is to 
destabilize the larger clusters relative to the smaller 
ones. Although a few changes in the order of stability 
of associates of the same size do occur the overall 
pattern remains essentially unchanged: nnn monomers 
remain more stable than nn monomers; A-type dimers 
remain the most stable and I-type the least stable of 
their size; 4-1 (M 3+) associates remain more stable than 
4-1 (Mg 2+ ) and so on. Thus calculations would indicate 
that the overall degree of association decreases with 

temperature and that the distribution of associated 
Cr 3+ impurity changes in favour of the smaller associ- 
ates: we shall return to this effect in Section 4. 

The final point we wish to consider here concerns 
such comparisons as can be made with experiment and, 
in particular, whether the calculated temperature 
dependence can be verified. Almost invariably, associ- 
ation energies cannot be measured directly, but are 
obtained from related quantities. What is clearly 
important, therefore, is the functional form of this 
relationship and the way in which the association 
energy is extracted. To illustrate this, we consider the 
formation of monomers, (XMgVMg)', from XMg and V~g 

XMg -3V V~lg --~ (XMgVMg)' (6) 

for which the association constant, 2, is given by 

,~ = [(XMgVMg)']/([XMg][V~ag]) (7) 

In the case of scandium impurity, Sempolinski and 
Kingery [6] have obtained 2 as a function of tempera- 
ture 

;~ = ~(T) (8) 

from which they have derived an association energy, u, 
of 0.73 eV by writing 2(T) in the form, 

).(T) = A exp ( - u / k T )  (9) 

In this case it is clear that u is to be identified with the 
association energy at 0 K and not at a high temperature 
value because if we write 2(T) in the form 

2(T) = A' exp [ - u ( T ) / k T ]  (10) 

and assume a linear relationship so that 

then 

u(T)  = u ~ - A u T  (11) 

2(T) = A' exp (Au/k) exp ( - u ~  (12) 

= A exp ( - u ~  (13) 

T A B L E I X Calculated defect association energies, in eV per vacancy, as a function of temperature for the range of defects considered. 
The lattice expansion is the same as that given in Table VIII 

Defect Temperature (K) 

0 500 1000 1500 2000 2500 

nn monomer 0.75 0.70 0.64 0.58 0.51 0.42 
nnn monomer 0.84 0.80 0.77 0.73 0.68 0.62 

Dimer A 1.56 1.51 1.44 1.37 1.28 1.17 
Dimer B 1.41 1.33 1.25 1.15 1.05 0.91 
Dimer C 1.38 1.35 1.29 1.22 1.14 1.04 
Dimer D 1.33 1.26 1.19 1.11 1.01 0.89 
Dimer E 1.30 1.20 1.10 0.98 0.86 0.70 
Dimer F 1.27 1.18 1,08 0.97 0.85 0.70 
Dimer G 1.12 1.06 1,00 0.93 0.85 0.75 
Dimer H 1.07 0.99 0.9l 0.82 0.72 0.59 
Dimer I 1.00 0.91 0.81 0.70 0.58 0.44 

Tetramer 1.66 1.58 1.50 1.40 1.29 1.15 

4-1(M 3+ ) 1.89 1.79 1.69 1.56 1.43 1.25 
4-1(Mg 2+ ) 1.48 1.43 1.37 1.29 1.21 1.10 
6-2(M 3+ ) 1.99 1.92 1.80 1.69 1.56 1.39 
6-2(Mg 2+ ) 1.43 1.38 1.33 1.27 1.19 1.09 
8-2(M 3+ ) 2.03 1.92 1.80 1.66 1.51 1.32 
8-2(Mg 2+ ) 2.08 1.98 1.88 1.75 1.61 1.44 
16-5 2.20 2.09 1.98 1.84 1.68 1.47 
24-5 2.18 2.07 1.95 1.81 1.65 1.44 
24-5-a 2.43 2.32 2.20 2.06 1.89 1.68 
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Figure 7 The equilibrium defect distribution of Cr 3+ in MgO as a function of temperature when the mass-action analysis is restricted to 
monomeric and dimeric defects. In (a) the total Cr 3+ concentration is 1000p.p.m. and in (b) it is 10000p.p.m.: the analysis is based on 
association energies calculated using Potentia] I. 

which is the form used by Sempolinski and Kingery [6]. 
It should be noted that our calculations confirm that 
such association energies are, in general, approximately 
linear functions of T at least up to 1500 K. To obtain 
the temperature dependence of the association energy, 
it would be necessary to know the value of A' indepen- 
dently. In general, therefore, the use of Arrhenius 
expression to extract energies, including migration 
energies, from experimentally determined temperature- 
dependent quantities, such as 2(T), leads to values that 
are most appropriately compared with zero K calcu- 
lations, rather than those relating to high temperatures. 

4. Mass-action analysis 
A useful way to assess the influence of the relative 
magnitudes of association energies of various defect 
complexes on the equilibrium defect distribution is to 
effect a mass-action analysis of the system. The rela- 
tive stabilities of defect complexes with the same com- 
positions is usually obvious from their association 
energies, but the relative stabilities of aggregates with 
different compositions are more difficult to assess. A 
full analysis of the relevant mass-action equations is 
required to reveal the equilibrium defect distribution. 
Such an analysis is based only on thermodynamic 
considerations and take no account of possible kinetic 
limitations. 

The basic approach used in a mass-action analysis 
based on the results of atomistic simulation calcu- 
lations has been described elsewhere [32]. In the results 
presented here, activity coefficients of unity have been 
assumed and non-configurational entropy terms are 
neglected. The case of  C r  3+ , which is the most exten- 
sively studied trivalent impurity in MgO, is used to 
illustrate the general features of the defect equilibria in 
these systems. 

Restricting the analysis initially to monomeric and 
dimeric aggregates and using the results from Poten- 
tial I shown in Tables II, IV, V and VII, the defect 
equilibria at impurity concentrations of 1000p.p.m. 
and 10 000 p.p.m, of C r  3+ a r e  illustrated as a function 
of temperature in Fig. 7 in terms of the percentage of 

the total Cr 3+ ions which occur in each aggregate. For 
clarity, only aggregates which contain 5% or more of 
the total impurity concentrations are included. These 
plots show a transition from a defect structure domi- 
nated by isolated impurities at high temperatures to 
one dominated by the most stable dimer (A) at low 
temperatures: the cross-over point occurs at higher 
temperatures in the more heavily doped crystals. The 
results indicate that at intermediate temperatures, 
there may be many different dimers present in signifi- 
cant amounts. 

When all the larger aggregates for which association 
energies have been calculated are included in this type 
of analysis, then, as shown in Fig. 8, only two clusters, 
the 4-1(M 3+) and 24-5-a, are predicted to exist in 
significant quantities at lower temperatures. At the 
higher temperatures, these clusters have a negligible 
effect on the equilibrium distribution. As the tempera- 
ture is lowered, however, the concentration of the 
4-1(M 3+) cluster first rapidly increases and then 
decreases as the 24-5-a cluster begins to dominate. 
The majority of the impurity ions, at very low tem- 
peratures, are predicted to exist in this 24-5-a cluster. 
The temperature at which these two large clusters 
begin to appear in the defect equilibria increases with 
the total dopant concentration. It is interesting to note 
that the tetramer considered in these calculations is 
not predicted by the mass-action analysis to occur in 
significant quantities. 

Clearly the mass-action approach depends critically 
on reliable values for the association energies of the 
complexes and on the assumption that all the com- 
plexes existing in the system have been included in the 
analysis. Nevertheless, it affords a reasonable guide- 
line as to the response of the defect equilibrium to 
changes in temperature and in the concentration of the 
impurity. 

We have also used the association energies calculated 
as a function of temperature and shown in Table IX in 
the mass-action programme to estimate the distribu- 
tion of the impurity ion Cr 3+. The results at each of 
the temperatures varied very little from those shown in 
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Figure 8 The equilibrium defect distribution of  Cr 3+ in MgO as a function of temperature when the mass-action analysis includes the larger 
clusters. In (a) the total Cr 3+ concentration is 1000 p.p.m, and in (b) it is 10 000 p.p.m.: the analysis is based on association energies calculated 
using Potential I, 

Figs 7 and 8 and in all cases no changes were found in 
the principal features of the defect distributions. 

5. Comparison w i t h  exper iment  
Experimental association energies have been measured 
for a small number of trivalent impurity ion in MgO. 
The M g O : C r  3+ system was studied by Glass [33] 
using e.s.r, and optical measurements on annealed 
samples. He reported values of 0.78 eV and 0.54eV as 
lower limit values for the magnitude of the association 
energies of nn and nnn monomers, respectively. Glass 
also reported values of 0.32eV for the magnitude of 
the additional association energy when a second Cr 3+ 
ion is added to a (CrMgVMg)' monomer for both dimers 
A and B. However, due to some assumptions made 
in the course of the analysis, these results must be 
regarded as less than reliable [24]. A more recent study 
on the same system [34] determined a value of 0.88 +_ 
0.13 eV for the magnitude of the association energy of 
a (CrMggNg)' monomer based on diffusion data: it is 
not clear whether this association energy applies to the 
nn or nnn monomer or to a combination of  these 
species. The mass-action analysis presented here for 
the M g O : C r  ~+ system clearly shows that for lower 
temperatures and higher impurity concentration, the 
amount of chromium present in dimeric species may 
exceed that present in monomeric species. Until 
recently, experimental evidence existed only for the 
monomeric species. However, evidence for the exist- 
ence of dimeric associates has recently been published 
based on spectroscopic studies of this system [35]. This 
study identified new lines in the e.s.r, spectra of 
M g O : C r  3+ crystals which were attributed to dimers 
A and C. A more recent study of the M g O : C r  3+ 
system [36] has identified new lines in the luminescence 
spectra, which have been attributed to structures in 
which a third Cr 3+ ion is located within four to six 
lattice spacings of dimer A. 

The MgO : Fe 3+ system was investigated by Gourdin 
et al. [37] who studied the oxidation-reduction of  iron 
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in MgO and compared their experimental findings 
with the results of a mass-action analysis of the sys- 
tem. The energies used in this analysis were varied 
until agreement with experiment was obtained. In this 
way, they determined values of 0.69 and 0.92 eV for 
the magnitude of the association energies of nn and 
n n n  (FeMgVMg)' monomers, respectively, and 0.56 and 
0.46 for the magnitudes of the additional association 
energies for the formation of dimers A and E, respect- 
ively, from the appropriate monomers. However, as 
the authors point out, these values do not necessarily 
represent a unique set of parameters for the system. 
The same system was further investigated by Yager 
and Kingery [38] using high-temperature e.s.r, spectro- 
scopy to follow the changes in the concentration of nn 
(FeMgVMg)' monomers ,  as a function of temperature. 
Interpretation of the results by mass-action analysis 
yielded a value of 0.85 eV for the magnitude of the 
association energy of the nn monomer. 

The system MgO:Sc  3+ was investigated by 
Sempolinski and Kingery [6] using ionic conductivity 
measurements. As mentioned earlier they obtained a 
value of 0.73 4- 0.20eV for the magnitude of the 
association energy of a (ScMgVMg)' monomer. How- 
ever, from the type of measurement used, it was not 
possible to ascertain whether this association energy 
refers to the nn or nnn monomer. 

The agreement with our theoretical values is reason- 
able for all these systems, but the limited number of 
impurities for which experimental data are available 
and the rather large errors inherent in these experi- 
mental techniques makes an assessment of the suit- 
ability of the potential models used rather difficult. 
There is, however, one important difference between 
the theoretical values obtained from the two poten- 
tials. Potential II predicts almost the same values for 
the association energies for a particular defect for 
impurity ions ranging in size from Co 3+ (0.060 nm) to 
Sc 3+ (0.0745 nm) whereas for Potential I, a definite 
size dependence is clearly evident. This is due to the 
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Figure 9 A comparison of the short-range impurity ion-oxygen ion 
potentials for the ions Cr 3+ , Fe 3+ and Sc 3+ for Potentials 1 and II. 

fact that the short-range impurity-host interactions of  
Potential II are very similar for all of  these ions. 
Fig. 9 shows the variation in the impurity-oxygen 
short-range potential with the interionic separation 
for each of the potentials for the ions Cr 3+ , Fe 3+ and 
Sc 3+ which have radii of 0.0615, 0.0645 (high spin) and 
0.0745nm, respectively. For  our calculations with 
Potential I, a definite impurity size dependence is 
evident whereas this is not the case for Potential II. 
This reflects the way in which these impurity host 
potentials were derived. Potential I used a fitting 
procedure incorporating the lattice parameter of the 
oxide of  the impurity ion and thus, indirectly, the 
impurity ion radius based on oxides. The interactions 
used in Potential II were derived without recourse to 
experimental data and therefore might not be expected 
to correlate to the same extent over a short range of  
impurity ion sizes. Some correlation is observed, how- 
ever, for association energies calculated using Poten- 
tial II over the larger impurity ion radius range, AI 3+ 
(0.053nm) to Y >  (0.090nm) and is similar to that 
observed for Potential I. 

Little experimental evidence is available for the 
existence of the kinds of large clusters considered here. 
There is, however, considerable evidence for the exist- 
ence of similar clusters and for other different clusters 
in nonstoichiomeric ,Fel_~-O which, if regarded as 
stoichiometric FeO doped with Fe 3+ ions, is to some 
extent analogous to the MgO : M 3+ systems considered 
here. A study of  Fe~_xO [25] was extended to include 
calculations on the 12-4 cluster proposed by Lebreton 
and Hobbs [39] which was found to be particularly 
stable. Experimental evidence for the existence of this 
cluster had been provided by electron microscopy. 
The simulation studies concluded that the most stable 
aggregates resulted from edge sharing rather than 
corner sharing of the basic 4-1 tetrahedral unit. This 
contrasts with the present results for MgO : Ee 3+ sys- 
tems which favour corner-sharing aggregates. 

Experimental evidence for clusters in the MgO : Fe 3+ 
system was reported by Waychunas [40] who utilized 
M6ssbauer spectroscopy and EXAFS measurements 
to estimate the octahedral to tetrahedral (O/T) Fe 3+ 
site occupancy ratio. From these measurements, he 
reported the presence of  a range of defect aggregates 
consisting of  basic monomeric and dimeric units and 
variations about the 4-1 cluster. However, many clus- 
ter geometries can be devised with similar O/T ratios 
and precise determination of the configuration of 
the clusters present was not possible using these 
techniques. 

The decay of M g O : F e  3§ systems supersaturated 
with monomers was investigated by Yager and Kingery 
[41] and was found to follow second-order kinetics 
and to be consistent with the aggregation of a mono- 
mer and a dimer to form what is referred to as a 
3-cluster, composed of three Fe 3+ substitutional 
impurities and two cation vacancies, with an overall 
effective charge of - 1 .  No specific geometry was 
proposed for this cluster. 

Clearly, in view of the difficulty in determining 
experimentally the exact structure of larger clusters in 
these systems, atomistic simulation techniques are 
particularly useful because they indicate the cluster 
geometries which are most likely to form. Based on 
the association energies calculated for the MgO : Cr 3+ 
system, using Potential I, the mass action results 
presented here clearly predict that of  the larger clus- 
ters considered, only the 4-1(M 3+) and the 24-5-a 
clusters are expected to contribute significantly to the 
defect equilibria: they would be expected to dominate at 
lower temperatures. 

6. Conclusions 
Atomistic simulation techniques have been shown to 
be extremely useful in the elucidation of the nature 
and equilibrium distribution of trivalent cationic 
impurities and their change-compensating vacancies 
in MgO. These systems have proved difficult to inves- 
tigate experimentally but the association energies 
calculated here are in reasonable agreement with 
the available experimental data. The values of the 
calculated defect energies depend somewhat on the 
interionic potential used. The limited experimental 
information makes it difficult to asses the correctness 
of these potentials but the semi-empirical potentials 
were found to reproduce the expected dependence of 
the association energies on the sizes of the impurity 
ions rather better than did the potentials derived 
predominantly from the electron gas approximation. 

Incorporation of the theoretical association energies 
for a range of aggregate defects into a mass-action 
analysis of  the equilibrium distribution of Cr 3 + ions in 
MgO predicted that the defect structure would be 
dominated by dimers and larger clusters at the higher 
impurity concentrations and at lower temperatures. Of 
the larger clusters considered, only two, the 4-1(M 3+ ) 
and 24-5-a were predicted to form in significant con- 
centrations. In general, the calculations show that for 
clusters based on the 4-1 tetragonal unit those con- 
taining M 3+ interstitial are more stable than those 
with dipositive host cation interstitials. 

2835 



Acknowledgements 
We are grateful to the Computer Centres at University 
College Dublin and Trinity College Dublin. JCGC 
acknowledges the award of a Department of Edu- 
cation Post-graduate Grant. 

References 
1. M. O. HENRY,  J. P. L AR KIN and G. F. IMBUSCH,  

Phys. Rev. B 13 (1976) 1893. 
2. R. A. WEEKS,  J. G A S T I N E A U  and E. SONDER,  

Phys. Status Solidi (a) 61 (1980) 265. 
3. J. CORISH,  P . W . M .  JACOBS and S. RADHA-  

KRISHNA,  in "Surface and Defect Properties of  Solids", 
Vol. 6, edited by M. W. Roberts and J. M. Thomas,  (The 
Chemical Society, London,  1977) Ch. 5. 

4. B. J. WUENSCH,  "Mass  Transport  Phenomena in Cer- 
amics", edited by A. R. Cooper and A. H. Heuer, Materials 
Science Research, Vol. 9 (Plenum, New York, 1975) p. 211. 

5. R. FREER,  J. Mater. Sci. 15 (1980) 803. 
6. D. R. SEMPOLINSKI  and W. D. K I N G E R Y ,  J. Amer. 

Ceram. Soc. 63 (1980) 664. 
7. C. R. A. CATLOW, J. CORISH,  K . M .  DILLER,  

P. W. M. JACOBS and M. J. NOR GE T T ,  J. Phys. C. 12 
(1979) 451. 

8. P. W. M. JACOBS, J. CORISH and C. R. A. CAT- 
LOW, ibid. 13 (1980) 1977. 

9. J. CORISH, C. R. A. CATLOW, P. W. M, JACOBS 
and S. H. ONG,  Phys. Rev. B 25 (1982) 6425. 

10. P. J. BENDALL,  C. R. A, CATLOW, J. CORISH and 
P. W. M. JACOBS, J. SolidState Chem. 51 (1984) 159. 

11. W. H. G O U R D I N  and W. D. K I N G E R Y ,  J. Mater. Sci. 
14 (1979) 2053. 

12. E. A. COLBOURN and W. C. M A C K R O D T ,  ibid. 17 
(1982) 3021. 

13. M. J. NORGETT,  U K  AE R E  Harwell, Report  R7650 
(1974). 

14. C. R. A. CATLOW and W. C. M A C K R O D T  (eds), 
"Computer  Simulation of  Solids", in "Lecture Notes in Phys- 
ics", Vol. 166 (Springer, Berlin, 1982). 

15. C. R. A. CATLOW, I . D .  FAUX and M . J .  NOR- 
GETT, J. Phys. C 9 (1976) 419. 

16. W. C. M A C K R O D T  and R. F. STEWART,  ibid. 12 
(1979) 431. 

17. M. J. L. SANGSTER and A. M. STONEHAM,  Phil. 
Mag. B 43 (1981) 597. 

18. G. V. LEWIS, PhD thesis, University of  London (1983). 

19. E. A. COLBOURN,  J. K E N D R I C K  and W. C. MACK-  
RODT, ICI Corporate Laboratory Report CL-R/81/1637/A 
(1981). 

20. F. A. K R O G E R  and H. J. VINK, Solid State Phys. 3 
(1956) 307. 

21. J. CORISH, J. M. QUIGLEY,  P. W. M. JACOBS and 
C. R. A. CATLOW, Phil. &lag. A 44 (1981) 13. 

22. P. B, F ITZSIMONS and J. CORISH,  Phys. Status Solidi 
(a) 91 (1985) 543. 

23. A. BRUN and P. DANSAS, Phys. Status Solidi (b) 66 
(1974) 201. 

24. J. C. G. CARROLL,  PhD thesis, University of  Dublin 
(1985). 

25. C. R. A. CATLOW and B. E. F. FENDER,  J. Phys. C 
8 (1975) 3267. 

26. N. L. ALLEN,  W. C. M A C K R O D T  and M. LESLIE, 
Adv. Ceram. 23 (1987). 

27. G. PECKHAM,  Proc. Phys. Soe. 90 (1967) 657. 
28. G. V. SAMSONOV, "The Oxide Handbook" ,  2nd Edn 

(IFI/Pienum, 1982)p. 120. 
29. C. R. A. CATLOW,  J. CORISH,  P. W. M. JACOBS 

and A. B. L IDIARD,  J. Phys. C 14 (1981) LI21. 
30. J. H. H A R D I N G ,  Physiea 131B (1985) 13, 
31. N. L. ALLEN and W. C. M A C K R O D T ,  unpublished 

results (1988). 
32. S. M. TOMLINSON,  C. R. A. CATLOW and J . H .  

H A R D I N G ,  U K  AERE Harwell, Report  TP1095 (1984). 
33. A. M. GLASS, J. Chem Phys. 46 (1967) 2080. 
34. G. W. WEBER, W. R. BITLER and v .  S. STUBICAN,  

J. Phys. Chem. Solids 41 (1980) 1355. 
35. J. C. G. C A R R O L L ,  SARA M. M c M U R R Y ,  J. COR- 

ISH and B. HENDERSON,  J. Phys. C 18 (1985) 6409. 
36. M. B. O NE1LL, PhD thesis, University of  Strathclyde 

(1987). 
37. w .  H. G O U R D I N ,  W. D. K I N G E R Y  and J. DRIEAR,  

J. Mater. Sci. 14 (1979) 2074. 
38. T. A. YAGER and W. D, KINGERY,  ibid. 16 (1981) 

489. 
39. C. LEBRETON and L. W. HOBBS, Rad. Effects 74 

(1983) 227. 
40. G. A. WAYCHUNAS,  J. Mater. Sei. 18 (1983) 195. 
41. T. A. YAGER and W. D. KINGERY,  ibid. 16 (198l) 

483. 

Received 19 August 
and accepted 1 December 1987 

2836 


